
Entropy and Expansive Map

Elmar Lasa(elasa@clemson.edu)

Our references include Michael Brin’s Introduction to Dynamical System ([2]), James Brown Ergodic
Theory and Topological dynamics [3] and Goodman’s article [1].

1 Positioning the problem

Let (X, d) be a compact metric space. A homeomorphism f : X → X is expansive if there exists
δ0 > 0 such that for any two distinct points x ̸= y and for some n ∈ Z, d (fn (x) , fn (y)) ⩾ δ0. Given
a dynamical system, there are two notions of entropy: topological entropy and measure-theoretic
entropy also called (we shall call) metric entropy. It is well known (cf.[1]) that for Hausdorff topo-
logical space, therefore for all metric spaces, the metric entropy is less than the topological entropy.
Using variational principle, it is also shown that the topological entropy of a homeomorphism on a
compact metric space is the suppremum of its metric entropies over all Borel probability measures.
We shall prove in this work that this suppremum is actually attained for expansive maps. In this
case, f is said to have a measure of maximal entropy.

Metric Entropy

(X,B, µ) is Borel space such that µ [X] = 1.

1.1 Entropy for a partition

Let ζ = {Ci : 1 ⩽ i ⩽ m} for m ∈ N be a partition for X of essentially disjoint subsets of X, that
is for all i ̸= j, we have µ [Ci ∩ Cj] = 0. We have to set up some vocabularies[2].

• Refinement. The partition ζ ′ is said to be a refinement of ζ, denoted ζ ′ ⩾ ζ if ∀C ∈ ζ ∃C ′ ∈
ζ ′ (C ′ ⊆ C (mod0)), that is every element in ζ is essentially contained in an element in ζ ′;

• Equivalence. Two partitions are said to be equivalent if they are refinement of each other;

• Independence. Two partitions ζ and ζ ′ are independent if µ [C ∩ C ′] = µ [C] · µ [C ′] whenever
C ∈ ζ and C ′ ∈ ζ ′;

• If T : X → X is a transformation, we shall write T−1 (X) = {T−1 (Ci) : 1 ⩽ i ⩽ m}.
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1.1 Entropy for a partition

We can define a metric on the space of partitions we shall denote ℘ (X). Define d : ℘ (X) →
R+ by d (ζ, ζ ′) = minσ∈Sm

∑m
i=1 µ

[
Ci∆C ′

σ(i)

]
where ∆ denotes symmteric difference, and ζ =

{Ci : 1 ⩽ i ⩽ m}, η = {Di : 1 ⩽ i ⩽ m}, and finally Sm is the group of permution of {1, . . . ,m}. In-
deed, d is a distance. (i) Given ζ = {Ci : 1 ⩽ i ⩽ m} and ζ ′ = {C ′

i : 1 ⩽ i ⩽ m}, if d (ζ, ζ ′) = 0 then∑m
i=1 µ

[
Ci∆C ′

σ0(i)

]
= 0 for some σ0 ∈ Sm. By positivity, this must imply that µ

[
Ci∆Dσ0(i)

]
= 0

for all 1 ⩽ i ⩽ m. This means that for each i, there exists j = σ0 (i) such that Ci is essentially
subset an element in ζ ′, namely C ′

j. Similarly, given i, there exists j = σ−1
0 (i) such that C ′

i is
essentially subset of Cj. Hence ζ and ζ ′ are equivalent. Now, let us prove the triangle inequality.
Given three partitions ζ, ζ ′ and ζ ′′ whose elements are denoted Ci, C

′
i, C

′′
i respectively we have for

some σ0 ∈ Sm

d (ζ, ζ ′) = min
σ∈Sm

m∑
i=1

µ
[
Ci∆C ′

σ(i)

]
=

m∑
i=1

µ
[
Ci∆C ′

σ0(i)

]

Given σ, σ′ ∈ Sm, we have
∑m

i=1 µ
[
Ci∆C ′

σ(i)

]
=
∑m

i=1

(
µ [Ci] + µ

[
C ′

σ(i)

]
− 2µ

[
Ci ∩ C ′

σ(i)

])
=

2
(
1−

∑m
i=1 µ

[
Ci ∩ C ′

σ(i)

])
and

∑m
i=1 µ

[
C ′

i∆C ′′
σ′(i)

]
= 2

(
1−

∑m
i=1 µ

[
C ′

i ∩ C ′′
σ′(i)

])
. Let i0 and

ℓ0 = σ (i0) be two distinct indices such that µ
[
Ci ∩ C ′

σ(i)

]
⩽ µ

[
Pi ∩ C ′

ℓ0

]
and µ

[
C ′

i ∩ C ′′
σ′(i)

]
⩽

µ
[
C ′

i0
∩Qi

]
for all i and for some partitions {Pi : 1 ⩽ i ⩽ m} and {Qi : 1 ⩽ i ⩽ m}. Then, with∑

j µ
[
Cj∆C ′′

τ(j)

]
= 2

(
1−

∑
j µ
[
Cj ∩ C ′′

τ(j)

])
, this gives

∑
i

µ
[
Ci∆C ′

σ(i)

]
+
∑
i

µ
[
C ′

i∆C ′′
σ′(i)

]
−
∑
i

µ
[
Ci∆C ′′

τ(i)

]
⩾ 2

(
1−

∑
i

µ
[
Pi ∩ C ′

ℓ0

]
−
∑
i

µ
[
C ′

i0
∩Qi

]
+
∑
j

µ
[
Cj ∩ C ′′

τ(j)

])

= 2

(
1− µ

[
C ′

ℓ0

]
− µ

[
C ′

i0

]
+
∑
j

µ
[
Cj ∩ C ′′

τ(j)

])
⩾ 0

The last inequality is from the fact that ζ ′ = {C ′
i}1⩽i⩽m is a partition of X, implying that µ

[
C ′

i0

]
+

µ
[
C ′

ℓ0

]
⩽
∑

i µ [C ′
i] = 1.

Since this is true for all σ, σ′ and τ , we can take the infimums which are attained at some σ0, σ
′
0

and τ0 therefore establishing the triangle inequality.

What motivates the definition of metric entropy follows from the Bernouilli automorphism of the
shift space Σm. The metric entropy for a partition ζ = {C1, . . . , Cm} is defined by

H (ζ) = −
m∑
i=1

µ [Ci] log µ [Ci]
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1.2 Conditional Entropy

If for x ∈ X we considerm (x, ζ) the element Cx of ζ containing x, thenH (ζ) = −
m∑
i=1

∫
x∈Ci

log µ [Ci] dµ =

−
m∑
i=1

∫
x∈Ci

logm (x, ζ) dµ = −
∫
X

logm (x, ζ) dµ.

Proposition. [2] Let ξ and η be finite partitions. Then

(i) H (ξ) ⩾ 0, H (ξ) if and only if ξ is the trivial partition;

(ii) if ξ ⩽ η then H (ξ) ⩽ H (η) and equality holds if and only if ξ and η are equivalent;

(iii) If ξ has n elements, then H (ξ) ⩽ log n, and equality holds if and only if each element has
measure 1

n
;

(iv) H (ξ ∨ η) ⩽ H (ξ) +H (η) with equality if and only if ξ ⊥ η.

Proof. We only prove the first statement, the rest is found in [2]. Let ξ = {Ci : 1 ⩽ i ⩽ m} be a

partition for X. It is obvious that H (ξ) ⩾ 0. If H (ξ) = 0 then

∫
X

− logm (x, ξ) dµ = 0 with

− logm (x, ξ) ⩾ 0. Since µ [X] = 1, it must be true that − logm (x, ξ) = 0 for all x ∈ X, then
m (x, ξ) = 1 that is, any element of ξ contains essentially the whole set X. In other words, ν := {X}
is a refinement of ξ. Therefore, ξ ∼ ν.

1.2 Conditional Entropy

Condiditional entropy for a finite partition ξ, |ξ| = I, with respect to finite partition η, |η| = J is
defined as

H (ξ|η) = −
∑
j∈J

µ [Dj]
∑
i∈I

µ [Ci|Dj] log µ [Ci|Dj] = −
∫
X

log µ [C (x) |D (x)] dµ [x] .

Remark: ρ (ξ, η) = H (ξ|η) +H (η|ξ), is called Rokhlin metric.

1.3 Entropy of a measure-preserving transformation

Let T : X → X be a measure-preserving transformation and ζ = {Cα : α ∈ I} be a partition of X
with finite entropy. Consider T−k (ζ) =

{
T−k (Cα) : α ∈ I

}
and

ζn = ζ ∨ T−1 (ζ) ∨ · · · ∨ T−n+1 (ζ)

Since µ
[
T−k (Ci)

]
= µ [Ci] (measure preserving), also since H

(
T−k (ζ)

)
= H (ζ), and H (ξ ∨ η) ⩽

H (ξ) +H (η), it follows that
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1.4 Kolmogorov-Sinäı Theorem

H
(
ζm+n

)
⩽ H

(
ζ ∨ T−1 ∨ · · · ∨ T−m+1 (ζ) ∨ T−m (ζ) ∨ · · · ∨ T−m−n+1 (ζ)

)
⩽ H (ζm) +H

(
m+n−1∨
i=m

T−i (ζ)

)

= H (ζm) +H

(
n−1∨
i=0

T−i−m (ζ)

)

⩽ H (ζm) +
n−1∨
i=0

H
(
T−i−m (ζ)

)
= H (ζm) +

n−1∨
i=0

H
(
T−i (ζ)

)
= H (ζm) +H (ζn)

By Fekete’s subadditivity lemma, we know

h (T, ζ) = lim
n→∞

1

n
H (ζn)

exists, and is called metric entropy(or measure-theoretic entropy) of T with respect to the partition
ζ. Note by subadditivity that for all n ∈ N, H (ζn) ⩽ nH (ζ), therefore 1

n
H (ζn) ⩽ H (ζ) so that

H (T, ζ) ⩽ H (ζ).

Proposition. h (T, ζ) = limn→∞H (ζ|T−1 (ζn)).

The metric entropy of T is defined as the suppremum of h (T, ζ) over all finite measurable partitions
ζ of X:

h (T ) := sup {h (T, ζ) : ζ is measurable finite partition ofX} .
Entropy is an invariant for isomorphic dynamical systems[3]: it was first introduced by Kolmogorov
in 1958 before Sinäı brought slight modifications. In 1970, D.S. Ornstein showed that entropy is a
complete invariant for invertible Bernoulli shifts, that is, two Bernoulli shifts are measure theretic
isomoprhic if and only if they have the same entropy.

1.4 Kolmogorov-Sinäı Theorem

Definition. [Refining and generating partition]

• {ζn} is refining if ζn+1 ⩾ ζn;

• {ζn} is generating if ∀ξ∀δ > 0∃n0 such that for all n ⩾ n0, there exists ξn ⩽
∨n

k=−n ζn with
d (ξn, ξ) < δ;

• A generator is a finite partition ξ such that the sequence
∨n

k=0 T
k (ξ) is generating.

Lebesgue space has a generating sequence of finite partitions.

Theorem (Kolmogorov-Sinäı, [2]). Let ξ be a generator for T . Then h (T ) = h (T, ξ) .
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2 Elements of Solution

2.1 Variational Principle

in this section f : X → X is a homeomorphism, X is compact and M is the Borel probability
measure space on X, that is, the space of all finite Borel measures µ with µ [X] = 1.

Lemma. Let µ, ν ∈ M. For any measurable partition ξ of X

tHµ (ξ) + (1− t)Hν (ξ) ⩽ Htµ+(1−t)ν (ξ)

Proof. For each n ∈ N, tHµ (ξ
n)+(1− t)Hν (ξ

n) = −t
∑

i µ [Ci,n] log µ [Ci,n]−(1− t)
∑

i ν [Ci,n] log ν [Ci,n] =
−
∑

i (tµ [Ci,n] log µ [Ci,n] + (1− t) ν [Ci,n] log ν [Ci,n]). Since x 7→ x log x is convex, it follows that
tµ [Ci,n] log µ [Ci,n]+(1− t) ν [Ci,n] log ν [Ci,n] ⩾ (tµ [Ci,n] + (1− t) ν [Ci,n]) log (tµ [Ci,n] + (1− t) ν [Ci,n]).
Then tHµ (ξ

n) + (1− t)Hν (ξ
n) ⩽ −

∑
i (tµ [Ci,n] + (1− t) ν [Ci,n]) log (tµ [Ci,n] + (1− t) ν [Ci,n]) =

Htµ+(1−t)ν (ξ
n). Therefore, tHµ (ξ) + (1− t)Hν (ξ) ⩽ Htµ+(1−t)ν (ξ).

Given a partition ξ = {A1, . . . , Ak}, define its boundary as ∂ξ =
⋃

1⩽i⩽k ∂Ai where ∂A = A \
int (A) = A ∩X \ A is the topological boundary in the ordinary sense.

Lemma. Let µ ∈ M.

1. For any x ∈ X and any δ > 0, there exists δ′ ∈ (0, δ) such that µ [∂B (0, δ′)] = 0;

2. For any δ > 0, there is a finite measurable partition ξ = {C1, . . . , Ck} with diam (Ci) < δ for
all i and µ [∂ξ] = 0;

3. If {µn} ⊆ M is a sequence of Borel probability measure that converges to µ in the weak∗

topology1, and A is a measurable set with µ [∂A] = 0, then µ [A] = limn→∞ µn [A].

Let Mf represent the set of all f−invariant Borel probability measures. Then:

Theorem (Variational principle, [2]). Let f be a homeomorphism of a compact metric space X.
Then htop (f) = sup {hµ (f) : µ ∈ Mf}.

2.2 Entropy for expansive map

From variational principle, hλ (f) ⩽ htop (f) for all λ ∈ Mf . Let En be an (n, ϵ)− separated set
with ϵ ⩽ δ0, where δ0 is the expansiveness constant of f . By expansiveness, for distinct x, y in X
there exists i ∈ Z such that d (f i (x) , f i (y)) ⩾ δ0. Define νn = 1

|En|
∑

x∈En
δx and µn = 1

n

∑n−1
i=0 f i

∗νn.

By compactness, some {µnk
}k∈N converges. Let µ := limk µnk

, which is an accumulation point for
{µn}n∈N, and which is obviously f−invariant. Let ξ be a measurable partition such that diam (X) <
ϵ for all C ∈ ξ and ∂ξ = 0.

Consider the sequence
{∨n

k=−n f
k (ξ)

}
n∈N. For each x, y ∈

∨∞
k=−∞ fk (ξ), we have d

(
fk (x) , fk (y)

)
<

ϵ ⩽ δ0 for all k ∈ Z. By expansiveness, it must be true that x = y. Then the maximal diameter of

1meaning

∫
h (x)µn (x) →

∫
h (x) dµ (x) for all h measurable.
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2.2 Entropy for expansive map

elements of
{∨

−n⩽i⩽n T
i (ξ)

}
goes to 0. Hence,

{∨n
k=−n f

k (ξ)
}
is generating. Then ξ is generator

and by Kolmogorov-Sinäı, we know hµ (f) = hµ (f, ξ).

Now, for each C ∈ ξn, νn [C] = 0 or 1
|En| . Then Hνn (ξ

n) = log |En|. Then, as in a lemma in [2],

we can prove that limn→∞ log |En| ⩽ limq→∞ limn→∞
1
q
Hµn (ξ

q) = hµ (f, ξ). Therefore, htop (f) ⩽
hµ (f).

References

[1] T.N.T. Goodman. Relating topological entropy and measure entropy. Bulletin London Mathe-
matical Society, (3):176–180, 1971.

[2] Garrett Stuck Michael Brin. Introduction to Dynamical System. Cambrigde University Press,
2002.

[3] Ergodic Theory and Topological Dyanamics. James R. Brown. Academic Press, Columbia
University, New York, 1976.

Dynamical System
maths 8250, Clemson University 6


	Positioning the problem
	Entropy for a partition
	Conditional Entropy
	Entropy of a measure-preserving transformation
	Kolmogorov-Sinaï Theorem

	Elements of Solution
	Variational Principle
	Entropy for expansive map


